Batch Process Archives¶
Process large log archives efficiently using parallel processing, batch tuning, and performance optimization techniques.
Problem¶
You have large log archives (compressed or uncompressed) that need processing. Sequential processing is too slow, but you want to maximize throughput while managing memory usage and maintaining reasonable ordering.
Solutions¶
Basic Parallel Processing¶
Enable parallel processing for faster throughput:
# Basic parallel mode (auto-detects CPU cores)
kelora -j large-logs.json --parallel \
--filter 'e.level == "ERROR"'
# Specify thread count explicitly
kelora -j logs/*.json --parallel --threads 8 \
--filter 'e.status >= 500'
# Parallel with metrics
kelora -j archive.json --parallel \
-e 'track_count(e.service)' \
--metrics
Parallel processing:
- Automatically uses available CPU cores (
--threads 0) - Higher throughput than sequential mode
- May reorder output (use
--unorderedfor maximum speed) - Higher memory usage due to batching
Process Compressed Archives¶
Kelora automatically handles gzip compression:
# Single compressed file
kelora -j logs/app.log.gz --parallel \
--filter 'e.level == "ERROR"'
# Multiple compressed files
kelora -j logs/*.log.gz --parallel \
-e 'track_count(e.level)' \
--metrics
# Mixed compressed and uncompressed
kelora -j logs/*.log logs/*.log.gz --parallel
Batch Size Tuning¶
Adjust batch size for memory vs throughput tradeoffs:
# Large batches = higher throughput, more memory
kelora -j large.log --parallel --batch-size 5000 \
--filter 'e.level == "ERROR"'
# Small batches = lower memory, more overhead
kelora -j large.log --parallel --batch-size 500 \
--filter 'e.level == "ERROR"'
# Default batch size (1000) - good balance
kelora -j large.log --parallel
# Very large files with memory constraints
kelora -j huge.log --parallel --batch-size 100
Batch size guidelines:
- Default: 1000 (good balance)
- High memory available: 5000-10000
- Memory constrained: 100-500
- Complex transformations: Lower batch size
- Simple filters: Higher batch size
Unordered Output for Maximum Speed¶
Disable output ordering for best performance:
# Unordered output (fastest)
kelora -j logs/*.json --parallel --unordered \
--filter 'e.level == "ERROR"'
# With metrics (order doesn't matter)
kelora -j archive.json --parallel --unordered \
-e 'track_count(e.status)' \
--metrics
# Stats only (no event output, order irrelevant)
kelora -j logs/*.json --parallel --unordered \
--stats-only
When to use --unordered:
- Processing for metrics/stats only
- Order doesn't matter for analysis
- Maximum throughput is priority
- Large-scale batch processing
File Processing Order¶
Control which order files are processed:
# CLI order (default) - as specified on command line
kelora -j file1.log file2.log file3.log
# Name order - alphabetically by filename
kelora -j logs/*.json --file-order name
# Modification time - oldest first
kelora -j logs/*.json --file-order mtime
# Process newest logs first (reverse mtime)
kelora -j logs/*.json --file-order mtime --parallel
File order options:
cli: Command-line order (default)name: Alphabetical by filenamemtime: Modification time (oldest first)
Multiple Archive Processing¶
Process many archives efficiently:
# Process all archives in directory
kelora -j /var/log/archives/*.json.gz --parallel \
-e 'track_count(e.level)' \
--metrics
# Process with wildcard patterns
kelora -j logs/2024-*.log.gz --parallel --unordered \
--filter 'e.status >= 400'
# Recursive with find
find /var/log -name "*.log.gz" -type f -print0 | \
xargs -0 kelora -j --parallel --unordered \
-e 'track_count(e.service)' \
--metrics
Real-World Examples¶
Daily Archive Analysis¶
# Analyze yesterday's logs
kelora -j /var/log/app/app-$(date -d yesterday +%Y-%m-%d).log.gz \
--parallel \
-e 'track_count(e.level)' \
-e 'track_count(e.service)' \
-e 'if e.level == "ERROR" { track_count("errors_by_service_" + e.service) }' \
-m \
daily_report_$(date -d yesterday +%Y-%m-%d).txt
Monthly Archive Processing¶
# Process entire month of logs
kelora -j /var/log/archives/2024-01-*.log.gz \
--parallel --threads 16 --unordered \
-e 'track_count(e.level)' \
-e 'track_unique("active_users", e.user_id)' \
-e 'if e.has_path("duration_ms") { track_avg("avg_latency", e.duration_ms) }' \
-m \
monthly_report_2024-01.txt
Error Analysis Across Archives¶
# Find all errors in last week of archives
kelora -j /var/log/archives/2024-01-{15..21}-*.log.gz \
--parallel --batch-size 2000 \
--filter 'e.level == "ERROR"' \
-e 'e.error_type = e.get_path("error.type", "unknown")' \
-e 'track_count(e.error_type)' \
-k timestamp,service,error_type,message \
-m \
-J > errors_week_03.json
Performance Audit¶
# Extract slow requests from archives
kelora -f combined /var/log/nginx/access.log.*.gz \
--parallel --unordered --threads 12 \
--filter 'e.get_path("request_time", "0").to_float() > 1.0' \
-e 'e.latency = e.get_path("request_time", "0").to_float()' \
-e 'track_bucket("latency_buckets", floor(e.latency))' \
-e 'track_avg("avg_latency", e.latency)' \
-k timestamp,ip,path,request_time,status \
--metrics
Security Audit Across Archives¶
# Find suspicious activity in multiple archives
kelora -j /var/log/security/*.log.gz \
--parallel --batch-size 5000 \
--filter 'e.severity == "high" || e.severity == "critical"' \
-e 'track_count(e.event_type)' \
-e 'track_unique("affected_ips", e.source_ip)' \
-e 'e.hour = e.timestamp.format("%Y-%m-%d %H:00")' \
-e 'track_count(e.hour)' \
-m \
-J > security_audit.json
Database Query Analysis¶
# Analyze slow queries from database archives
kelora -j /var/log/postgres/postgres-*.log.gz \
--parallel --unordered \
--filter 'e.get_path("duration_ms", 0) > 1000' \
-e 'e.query_hash = e.query.hash("xxh3")' \
-e 'e.table = e.query.extract_re(r"FROM\\s+(\\w+)", 1)' \
-e 'track_count(e.table)' \
-e 'track_avg(e.table + "_latency", e.duration_ms)' \
-k timestamp,user,table,duration_ms,query_hash \
--metrics
User Activity Aggregation¶
# Aggregate user activity from month of archives
kelora -j /var/log/app/2024-01-*.log.gz \
--parallel --threads 16 --batch-size 5000 --unordered \
--filter 'e.has_path("user_id")' \
-e 'track_unique("daily_active_users", e.user_id)' \
-e 'track_count(e.action)' \
-e 'if e.action == "purchase" { track_sum("revenue", e.get_path("amount", 0)) }' \
--metrics
Multi-Year Archive Search¶
# Search for specific pattern across years
kelora -j /archives/app-{2022,2023,2024}-*.log.gz \
--parallel --threads 24 --unordered \
--filter 'e.message.contains("memory leak") || e.message.contains("out of memory")' \
-e 'e.year = e.timestamp.format("%Y")' \
-e 'track_count(e.year)' \
-k timestamp,service,level,message \
--metrics
Access Log Consolidation¶
# Consolidate web access logs
kelora -f combined /var/log/nginx/access.log.*.gz \
--parallel --batch-size 10000 --unordered \
-e 'track_count(e.status)' \
-e 'track_count(e.method)' \
-e 'track_unique("unique_ips", e.ip)' \
-e 'if e.has_path("bytes") { track_sum("total_bytes", e.get_path("bytes", "0").to_int()) }' \
-m \
--metrics-file nginx_consolidated_metrics.json
Time-Range Archive Processing¶
# Process archives within specific time range
kelora -j /var/log/archives/*.log.gz \
--parallel --batch-size 2000 \
--since "2024-01-15 00:00:00" \
--until "2024-01-20 23:59:59" \
--filter 'e.level == "ERROR"' \
-e 'track_count(e.service)' \
--metrics
Performance Optimization¶
CPU-Bound Workloads¶
# Max out CPU utilization
kelora -j huge.log \
--parallel --threads 0 \
--batch-size 5000 \
--unordered \
-e 'track_count(e.level)'
Memory-Constrained Environments¶
# Minimize memory usage
kelora -j huge.log \
--parallel --threads 4 \
--batch-size 200 \
--filter 'e.level == "ERROR"'
# Sequential processing (lowest memory)
kelora -j huge.log \
--filter 'e.level == "ERROR"'
I/O-Bound Workloads¶
# More threads than cores for I/O-heavy tasks
kelora -j /nfs/logs/*.json.gz \
--parallel --threads 32 \
--batch-size 1000 \
--unordered
Balanced Processing¶
# Good default for most workloads
kelora -j logs/*.json.gz \
--parallel \
--batch-size 1000 \
-e 'track_count(e.service)' \
--metrics
Monitoring and Validation¶
Processing Statistics¶
# Show detailed processing stats
kelora -j large.log.gz --parallel -s \
--filter 'e.level == "ERROR"'
# Stats only (no event output)
kelora -j logs/*.json.gz --parallel --unordered \
--stats-only
# Combine with metrics
kelora -j archive.log.gz --parallel \
-e 'track_count(e.level)' \
-s --metrics
Validate Processing¶
# Count events in archive
kelora -j archive.log.gz --parallel -qq \
-e 'track_count("total")' \
--metrics
# Verify no parsing errors (exit code 0)
kelora -j archive.log.gz --parallel -qqq && echo "✓ Clean" || echo "✗ Errors"
# Sample output for verification
kelora -j archive.log.gz --parallel -n 100 | less
Performance Benchmarking¶
# Benchmark sequential vs parallel
time kelora -j large.log --filter 'e.level == "ERROR"' > /dev/null
time kelora -j large.log --parallel --filter 'e.level == "ERROR"' > /dev/null
# Benchmark batch sizes
for size in 100 1000 5000 10000; do
echo "Batch size: $size"
time kelora -j large.log --parallel --batch-size $size -qq
done
# Compare thread counts
for threads in 2 4 8 16; do
echo "Threads: $threads"
time kelora -j large.log --parallel --threads $threads -qq
done
Tips¶
Performance:
- Use
--parallelfor files > 100MB - Use
--unorderedwhen order doesn't matter (20-30% faster) - Increase
--batch-sizefor simple operations (5000-10000) - Decrease
--batch-sizefor complex transformations (200-500) - Use
--threads 0to auto-detect CPU cores - I/O-bound tasks benefit from more threads than cores
Memory Management:
- Default batch size (1000) uses ~10-50MB per thread
- Large batch sizes can use significant memory with many threads
- Reduce batch size if you see OOM errors
- Sequential mode uses minimal memory (single-threaded)
- Window functions increase memory proportionally
File Processing:
.gzfiles are automatically decompressed- Use
--file-order mtimeto process chronologically - Use
--file-order namefor predictable ordering - Combine with shell globbing for flexible file selection
Automation:
# Scheduled archive processing
0 2 * * * kelora -j /var/log/archives/$(date -d yesterday +\%Y-\%m-\%d)*.gz \
--parallel --unordered -m > /reports/daily_$(date -d yesterday +\%Y-\%m-\%d).txt
# Parallel archive creation
find /var/log -name "*.log" -mtime +7 | \
parallel "gzip {}" "kelora -j {}.gz --parallel -qq --stats"
Export:
# Export to CSV for analysis
kelora -j logs/*.gz --parallel --unordered \
-k timestamp,level,service,message \
-F csv > consolidated.csv
# Export to JSON
kelora -j logs/*.gz --parallel \
--filter 'e.level == "ERROR"' \
-J > errors.json
# Persist metrics
kelora -j logs/*.gz --parallel --unordered \
-e 'track_count(e.service)' \
-m --metrics-file daily_metrics.json
Troubleshooting¶
Out of memory errors:
# Reduce batch size
kelora -j huge.log --parallel --batch-size 200
# Reduce thread count
kelora -j huge.log --parallel --threads 2
# Use sequential mode
kelora -j huge.log
Slow processing:
# Enable parallel mode
kelora -j large.log --parallel
# Increase batch size
kelora -j large.log --parallel --batch-size 5000
# Enable unordered output
kelora -j large.log --parallel --unordered
# Increase threads for I/O-bound
kelora -j /nfs/logs/*.gz --parallel --threads 32
Inconsistent output:
# Use ordered output (default in parallel mode)
kelora -j logs/*.json --parallel
# Or disable parallel if order is critical
kelora -j logs/*.json
Missing events:
# Check for parsing errors
kelora -j archive.log.gz --parallel --verbose
# Validate with stats
kelora -j archive.log.gz --parallel --stats
# Sample to verify
kelora -j archive.log.gz --parallel -n 1000
Progress monitoring:
# Use pv (pipe viewer) for progress
pv large.log.gz | gunzip | kelora -j --parallel
# Process with stats
kelora -j large.log.gz --parallel --stats
See Also¶
- Performance Model - Optimization guide
- Build Streaming Alerts - Real-time processing
- CLI Reference - All command-line options
- Execution Modes - How parallel mode works