Function Reference¶
Complete reference for all 150+ built-in Rhai functions available in Kelora. Functions are organized by category for easy lookup.
Function Call Syntax
Rhai allows two styles: value.method(args) or function(value, args). Use whichever feels more natural.
Quick Navigation¶
- String Functions - Text manipulation, parsing, encoding
- Array Functions - Array operations, sorting, filtering
- Map/Object Functions - Field access, manipulation, conversion
- DateTime Functions - Time parsing, formatting, arithmetic
- Math Functions - Numeric operations
- Type Conversion - Safe type conversions
- Utility Functions - Environment, files, pseudonyms
- Tracking/Metrics - Counters, aggregations
- File Output - Writing data to files
- Event Manipulation - Field removal, fan-out
- Span Context - Per-span metadata & rollups
String Functions¶
Extraction and Searching¶
text.extract_regex(pattern [, group])¶
Extract first regex match or capture group.
e.error_code = e.message.extract_regex(r"ERR-(\d+)", 1) // "ERR-404" → "404"
e.full_match = e.line.extract_regex(r"\d{3}") // First 3-digit number
text.extract_regexes(pattern [, group])¶
Extract all regex matches as array.
e.numbers = e.line.extract_regexes(r"\d+") // All numbers
e.codes = e.message.extract_regexes(r"ERR-(\d+)", 1) // All error codes
text.extract_re_maps(pattern, field)¶
Extract regex matches as array of maps for fan-out with emit_each().
// Extract all error codes with context
let errors = e.log.extract_re_maps(r"(?P<code>ERR-\d+): (?P<msg>[^\n]+)", "error");
emit_each(errors) // Each match becomes an event with 'code' and 'msg' fields
text.extract_ip([nth])¶
Extract IP address from text (nth: 1=first, -1=last).
e.client_ip = e.headers.extract_ip() // First IP
e.origin_ip = e.forwarded.extract_ip(-1) // Last IP
text.extract_ips()¶
Extract all IP addresses as array.
text.extract_url([nth])¶
Extract URL from text (nth: 1=first, -1=last).
text.extract_email([nth])¶
Extract email address from text (nth: 1=first, -1=last).
e.contact = e.message.extract_email() // First email
e.sender = e.log.extract_email(1) // First email
e.recipient = e.log.extract_email(-1) // Last email
text.extract_emails()¶
Extract all email addresses as array.
text.extract_domain()¶
Extract domain from URL or email address.
e.domain = "https://api.example.com/path".extract_domain() // "example.com"
e.mail_domain = "user@corp.example.com".extract_domain() // "corp.example.com"
String Slicing and Position¶
text.before(delimiter [, nth])¶
Text before occurrence of delimiter (nth: 1=first, -1=last).
e.user = e.email.before("@") // "user@host.com" → "user"
e.path = e.url.before("?") // Strip query string
text.after(delimiter [, nth])¶
Text after occurrence of delimiter (nth: 1=first, -1=last).
e.extension = e.filename.after(".") // "file.txt" → "txt"
e.domain = e.email.after("@") // "user@host.com" → "host.com"
text.between(start, end [, nth])¶
Text between start and end delimiters (nth: 1=first, -1=last).
Note: text.between(left, right, nth) is equivalent to text.after(left, nth).before(right).
e.quoted = e.line.between('"', '"') // Extract quoted string
"[a][b][c]".between("[", "]", 2) // "b" - same as .after("[", 2).before("]")
text.starting_with(prefix [, nth])¶
Return substring from prefix to end (nth: 1=first, -1=last).
text.ending_with(suffix [, nth])¶
Return substring from start to end of suffix (nth: 1=first, -1=last).
text.slice(spec)¶
Slice text using Python notation (e.g., "1:5", ":3", "-2:").
e.first_three = e.code.slice(":3") // "ABCDEF" → "ABC"
e.last_two = e.code.slice("-2:") // "ABCDEF" → "EF"
e.middle = e.code.slice("2:5") // "ABCDEF" → "CDE"
Column Extraction¶
text.col(spec [, separator])¶
Extract columns by index/range/list (e.g., '0', '0,2,4', '1:4'). Indices are 0-based.
e.first = e.line.col("0") // First column (0-indexed)
e.cols = e.line.col("0,2,4") // Columns 0, 2, 4
e.range = e.line.col("1:4", "\t") // Columns 1-3, tab-separated
text.cols(col1, col2 [, col3, ...] [, separator])¶
Extract multiple columns as an array. Supports up to 6 column indices (0-indexed). Returns an array of column values.
// Extract columns 0, 2, 4 as array
let values = e.line.cols(0, 2, 4) // ["value0", "value2", "value4"]
e.user = values[0]
e.action = values[1]
// With custom separator
let data = e.line.cols(1, 3, "\t") // Tab-separated columns
// Practical example: Apache log parsing
let parts = e.log.cols(0, 3, 6, 8) // IP, timestamp, path, status
e.ip = parts[0]
e.timestamp = parts[1]
e.path = parts[2]
e.status = parts[3]
Parsing Functions¶
text.parse_json()¶
Parse JSON string into map/array.
text.parse_logfmt()¶
Parse logfmt line into structured fields.
text.parse_syslog()¶
Parse syslog line into structured fields.
text.parse_combined()¶
Parse Apache/Nginx combined log line.
text.parse_cef()¶
Parse Common Event Format line into fields.
text.parse_kv([sep [, kv_sep]])¶
Parse key-value pairs from text. Only extracts tokens containing the key-value separator; tokens without the separator are skipped (e.g., prose words or unpaired values).
e.params = e.query.parse_kv("&", "=") // "a=1&b=2" → {a: "1", b: "2"}
e.fields = e.msg.parse_kv() // "Payment timeout order=1234" → {order: "1234"}
text.parse_url()¶
Parse URL into structured components.
text.parse_query_params()¶
Parse URL query string into map.
text.parse_email()¶
Parse email address into parts.
let email = "User Name <user@example.com>".parse_email()
e.name = email["name"] // "User Name"
e.address = email["address"] // "user@example.com"
text.parse_user_agent()¶
Parse common user-agent strings into components.
text.parse_jwt()¶
Parse JWT header/payload without verification.
text.parse_path()¶
Parse filesystem path into components.
let path = "/var/log/app.log".parse_path()
e.dir = path["dir"] // "/var/log"
e.file = path["file"] // "app.log"
text.parse_media_type()¶
Parse media type tokens and parameters.
let mt = "text/html; charset=utf-8".parse_media_type()
e.type = mt["type"] // "text"
e.subtype = mt["subtype"] // "html"
text.parse_content_disposition()¶
Parse Content-Disposition header parameters.
Encoding and Hashing¶
text.encode_b64() / text.decode_b64()¶
Base64 encoding/decoding.
text.encode_hex() / text.decode_hex()¶
Hexadecimal encoding/decoding.
text.encode_url() / text.decode_url()¶
URL percent encoding/decoding.
e.encoded = e.param.encode_url() // "hello world" → "hello%20world"
e.decoded = e.url_param.decode_url()
text.escape_json() / text.unescape_json()¶
JSON escape sequence handling.
text.escape_html() / text.unescape_html()¶
HTML entity escaping/unescaping.
e.safe = e.user_input.escape_html() // "<script>" → "<script>"
e.text = e.html_entity.unescape_html()
text.hash([algo])¶
Hash with algorithm (default: sha256, also: xxh3).
text.bucket()¶
Fast hash for sampling/grouping (returns INT for modulo operations).
IP Address Functions¶
text.is_ipv4() / text.is_ipv6()¶
Check if text is a valid IP address.
text.is_private_ip()¶
Check if IP is in private ranges (10.0.0.0/8, 172.16.0.0/12, 192.168.0.0/16).
text.is_in_cidr(cidr)¶
Check if IP address is in CIDR network.
text.mask_ip([octets])¶
Mask IP address (default: last octet).
e.masked_ip = e.client_ip.mask_ip() // "192.168.1.100" → "192.168.1.0"
e.partial = e.ip.mask_ip(2) // Mask last 2 octets
Pattern Normalization¶
text.normalized([patterns])¶
Replace variable patterns with placeholders (e.g., <ipv4>, <email>).
Useful for identifying unique log patterns by normalizing variable data like IP addresses, UUIDs, and email addresses to fixed placeholders.
// Default patterns (IPs, emails, UUIDs, hashes, etc.)
e.pattern = e.message.normalized()
// "User user@test.com from 192.168.1.5" → "User <email> from <ipv4>"
// CSV-style pattern list
e.simple = e.message.normalized("ipv4,email")
// Array-style pattern list
e.custom = e.message.normalized(["uuid", "sha256", "url"])
Default patterns (when no argument provided):
ipv4_port, ipv4, ipv6, email, url, fqdn, uuid, mac, md5, sha1, sha256, path, oauth, function, hexcolor, version
Available patterns (opt-in):
hexnum, duration, num
Common use case - Pattern discovery:
# Recommended alias for easy pattern discovery
kelora --save-alias patterns \
--exec 'track_unique("patterns", e.message.normalized())' \
--metrics -q
# Usage
kelora -a patterns app.log
Output with many patterns:
patterns (127 unique):
User <email> from <ipv4>
Request to <url> failed
Error <uuid> occurred
Connection <ipv4_port> established
Processing <fqdn> with <sha256>
[+122 more. Use --metrics-file or --end script for full list]
For custom analysis, access full data in --end scripts or --metrics-file.
String Manipulation¶
text.strip([chars]) / text.lstrip([chars]) / text.rstrip([chars])¶
Remove whitespace or specified characters.
e.clean = e.text.strip() // Remove leading/trailing whitespace
e.trimmed = e.line.lstrip("# ") // Remove "# " from left
e.path = e.filename.rstrip("/") // Remove trailing slashes
text.clip() / text.lclip() / text.rclip()¶
Remove non-alphanumeric characters from edges.
e.word = "'hello!'".clip() // → "hello"
e.left = "...start".lclip() // → "start"
e.right = "end...".rclip() // → "end"
text.upper() / text.lower()¶
Case conversion. Note: Both upper()/lower() and to_upper()/to_lower() are available - use whichever you prefer (Rhai builtins vs Python-style).
e.normalized = e.country_code.upper() // "us" → "US"
e.also_upper = e.code.to_upper() // Same as upper()
e.lowercase = e.name.lower() // "Hello" → "hello"
e.also_lower = e.name.to_lower() // Same as lower()
text.replace(pattern, replacement)¶
Replace all occurrences of pattern.
text.split(separator) / text.split_re(pattern)¶
Split string into array.
String Testing¶
text.contains(pattern)¶
Check if text contains pattern.
text.like(pattern)¶
Glob match (anchored) with * and ?.
text.ilike(pattern)¶
Case-insensitive glob match with Unicode folding.
text.matches(pattern)¶
Regex search with cached compilation. Invalid patterns raise errors.
Text Matching Functions Comparison¶
| Function | Anchored | Errors on invalid pattern | Case handling | Use case |
|---|---|---|---|---|
like() |
Yes | N/A (glob syntax) | Exact | Simple wildcard matching |
ilike() |
Yes | N/A | Unicode fold | Case-insensitive glob |
matches() |
No | Yes | Regex-driven | Full regex search with caching |
⚠️ Regex performance tips: avoid nested quantifiers like
(.*)*, prefer anchored patterns when possible, and reuse patterns to benefit from the per-thread cache.
text.is_digit()¶
Check if text contains only digits.
text.count(pattern)¶
Count occurrences of pattern in text.
text.edit_distance(other)¶
Compute Levenshtein edit distance between two strings.
text.index_of(substring [, start])¶
Find 0-based position of literal substring (-1 if not found). Optional start parameter specifies where to begin searching.
e.at_pos = e.url.index_of("?") // Find first "?"
e.second = e.text.index_of("test", 10) // Search starting at position 10
Array Functions¶
Sorting and Filtering¶
array.sorted()¶
Return new sorted array (numeric/lexicographic).
e.sorted_scores = sorted(e.scores) // [3, 1, 2] → [1, 2, 3]
e.sorted_names = sorted(e.names) // Alphabetical
array.sorted_by(field)¶
Sort array of objects by field name.
array.reversed()¶
Return new array in reverse order.
array.slice(spec)¶
Slice array using Python notation (e.g., "1:5", ":3", "-2:").
e.top_three = e.values.slice(":3") // [9, 8, 7, 6] → [9, 8, 7]
e.tail = e.values.slice("-2:") // [9, 8, 7, 6] → [7, 6]
e.every_other = e.values.slice("0::2") // [9, 8, 7, 6] → [9, 7]
array.unique()¶
Remove all duplicate elements (preserves first occurrence).
array.filter(|item| condition)¶
Keep elements matching condition.
Aggregation¶
array.max() / array.min()¶
Find maximum/minimum value in array.
array.percentile(pct)¶
Calculate percentile of numeric array.
array.sum()¶
Calculate sum of all numeric values (int, float) in array. All elements must be actual numbers (i64, f64). Mixed-type arrays (numbers + strings/booleans) are rejected and return (). No automatic string-to-number coercion. Returns () for empty arrays.
e.total_bytes = e.requests.pluck_as_nums("bytes").sum()
e.total_errors = [10, 20, 30].sum() // 60.0
[10, 20.5, 30].sum() // 60.5
[10, "20", 30].sum() // () - mixed types rejected
[].sum() // () - empty array
array.mean()¶
Calculate arithmetic mean (average) of numeric values (int, float). All elements must be actual numbers (i64, f64). Mixed-type arrays (numbers + strings/booleans) are rejected. No automatic string-to-number coercion. Returns error for empty arrays or non-numeric arrays.
e.avg_latency = e.latencies.mean()
e.avg_score = [10, 20, 30].mean() // 20.0
[10, "20", 30].mean() // ERROR - mixed types rejected
array.variance()¶
Calculate population variance of numeric values (int, float). All elements must be actual numbers (i64, f64). Mixed-type arrays are rejected. No automatic string-to-number coercion. Returns error for empty arrays or non-numeric arrays.
e.latency_variance = e.latencies.variance()
if e.latency_variance > 100.0 {
print("High variance detected")
}
array.stddev()¶
Calculate standard deviation (population) of numeric values (int, float). All elements must be actual numbers (i64, f64). Mixed-type arrays are rejected. No automatic string-to-number coercion. Returns error for empty arrays or non-numeric arrays.
e.latency_stddev = e.latencies.stddev()
if e.latency_stddev > 10.0 {
print("High variation: " + e.latency_stddev)
}
array.reduce(|acc, item| expr, init)¶
Aggregate array into single value.
Transformation¶
array.map(|item| expression)¶
Transform each element.
array.pluck(field) / array.pluck_as_nums(field)¶
Extract a single field from each element in an array of maps/objects, returning a new array of just those field values.
pluck(field) - Extract field values as-is, skipping elements where the field is missing or ().
pluck_as_nums(field) - Extract and convert field values to f64 numbers, skipping elements where conversion fails or the field is missing.
// Given array of event objects
let events = [
#{status: 200, time: "1.5"},
#{status: 404, time: "0.3"},
#{status: 200, time: "2.1"}
]
// Extract field values
let statuses = events.pluck("status") // [200, 404, 200]
let times = events.pluck_as_nums("time") // [1.5, 0.3, 2.1] (converted to numbers)
// Compare to manual approach
let manual = events.map(|e| e.status) // Same result, but errors if field missing
Common use cases:
// Calculate average response time
let times = events.pluck_as_nums("response_time")
let avg = times.reduce(|sum, x| sum + x, 0) / times.len()
// Find most common status codes
let codes = events.pluck("status")
for code in codes {
track_count(code)
}
// With window for rolling analysis (requires --window)
let recent_times = window.pluck_as_nums("response_time")
e.avg_recent = recent_times.reduce(|sum, x| sum + x, 0) / recent_times.len()
e.spike = recent_times.filter(|t| t > 1000).len()
Why use pluck() vs map():
- Safe: Automatically skips missing fields instead of erroring
- Clear intent: Explicitly shows you're extracting one field
- Type conversion:
pluck_as_nums()handles string-to-number conversion
array.flattened([style [, max_depth]])¶
Flatten nested arrays/objects.
e.flat = [[1, 2], [3, 4]].flattened() // Returns flat map
e.fields = e.nested.flattened("dot", 2) // Flatten to dot notation
Testing¶
array.contains(value)¶
Check if array contains value.
array.contains_any(search_array)¶
Check if array contains any search values.
array.starts_with_any(search_array)¶
Check if array starts with any search values.
array.all(|item| condition) / array.some(|item| condition)¶
Check if all/any elements match condition.
Other Operations¶
array.join(separator)¶
Join array elements with separator.
array.push(item) / array.pop()¶
Add/remove items from array.
Map/Object Functions¶
Field Access¶
map.get_path("field.path" [, default])¶
Safe nested field access with fallback.
map.has_path("field.path")¶
Check if nested field path exists.
map.path_equals("path", value)¶
Safe nested field comparison.
map.has("key")¶
Check if map contains key with non-unit value.
Field Manipulation¶
map.rename_field("old", "new")¶
Rename a field, returns true if successful.
map.merge(other_map)¶
Merge another map into this one (overwrites existing keys).
map.enrich(other_map)¶
Merge another map, inserting only missing keys (does not overwrite).
map.flattened([style [, max_depth]])¶
Flatten nested object to dot notation.
let flat = e.nested.flattened("dot") // {a: {b: 1}} → {"a.b": 1}
let flat = e.nested.flattened("dot", 2) // With max depth
map.flatten_field("field_name")¶
Flatten just one specific field from the map.
map.unflatten([separator])¶
Reconstruct nested object from flat keys.
Format Conversion¶
map.to_json([pretty])¶
Convert map to JSON string.
map.to_logfmt()¶
Convert map to logfmt format string.
map.to_kv([sep [, kv_sep]])¶
Convert map to key-value string with separators.
map.to_syslog() / map.to_cef() / map.to_combined()¶
Convert map to specific log format.
e.syslog_line = e.fields.to_syslog()
e.cef_line = e.security_event.to_cef()
e.access_log = e.request.to_combined()
DateTime Functions¶
Creation¶
now()¶
Current timestamp (UTC).
to_datetime(text [, fmt [, tz]])¶
Convert string into datetime value with optional hints.
e.parsed = to_datetime("2024-01-15 10:30:00", "%Y-%m-%d %H:%M:%S", "UTC")
e.auto = to_datetime("2024-01-15T10:30:00Z") // Auto-detect format
to_duration("1h30m")¶
Convert duration string into duration value.
duration_from_seconds(n), duration_from_minutes(n), etc.¶
Create duration from specific units.
Formatting¶
dt.to_iso()¶
Convert datetime to ISO 8601 string.
dt.format("format_string")¶
Format datetime using custom format string (see --help-time).
e.date = e.timestamp.format("%Y-%m-%d") // "2024-01-15"
e.time = e.timestamp.format("%H:%M:%S") // "10:30:00"
Component Extraction¶
dt.year(), dt.month(), dt.day()¶
Extract date components.
dt.hour(), dt.minute(), dt.second()¶
Extract time components.
Timezone Conversion¶
dt.to_utc() / dt.to_local()¶
Convert timezone.
dt.to_timezone("tz_name")¶
Convert to named timezone.
dt.timezone_name()¶
Get timezone name as string.
Time Bucketing¶
dt.round_to("interval")¶
Round timestamp down to the nearest interval. Useful for grouping events into time buckets for histograms and time-series analysis.
Accepts duration strings like "5m", "1h", "1d", etc.
// Group events into 5-minute buckets
let timestamp = to_datetime(e.timestamp);
e.bucket = timestamp.round_to("5m").to_iso();
track_bucket("requests_per_5min", e.bucket);
// Hourly buckets
e.hour_bucket = to_datetime(e.time).round_to("1h").format("%Y-%m-%d %H:00");
// Daily buckets
e.day = timestamp.round_to("1d").format("%Y-%m-%d");
Common intervals:
- "1m", "5m", "15m" - Minute-level bucketing
- "1h", "6h", "12h" - Hour-level bucketing
- "1d", "7d" - Day/week-level bucketing
Arithmetic and Comparison¶
dt + duration, dt - duration¶
Add/subtract duration from datetime.
dt1 - dt2¶
Get duration between datetimes.
dt1 == dt2, dt1 > dt2, etc.¶
Compare datetimes.
Duration Operations¶
duration.as_seconds(), duration.as_milliseconds(), etc.¶
Convert duration to specific units.
duration.to_string() / humanize_duration(ms)¶
Format duration as human-readable string.
duration.to_debug()¶
Format duration with full precision for debugging. Useful for inspecting exact duration values.
Math Functions¶
abs(x)¶
Absolute value of number.
clamp(value, min, max)¶
Constrain value to be within min/max range.
floor(x) / round(x)¶
Rounding operations.
mod(a, b) / a % b¶
Modulo operation with division-by-zero protection.
rand() / rand_int(min, max)¶
Random number generation.
e.random_id = rand_int(1000, 9999) // Random ID assignment
// For sampling, prefer sample_every() instead:
// if sample_every(10) { e.sampled = true } // Better: counter-based
sample_every(n)¶
Sample every Nth event - returns true on calls N, 2N, 3N, etc.
Fast counter-based sampling (thread-local, approximate in parallel mode). Each unique N value maintains its own counter. For deterministic sampling across parallel threads, use bucket() instead.
// Keep only every 100th event (1% sampling)
if !sample_every(100) { skip() }
// Keep every 10th event (10% sampling)
if sample_every(10) {
e.sampled = true
}
// Different N values have independent counters
sample_every(10) // Returns true on calls 10, 20, 30...
sample_every(100) // Returns true on calls 100, 200, 300...
Comparison with bucket():
- sample_every(n) - Fast counter, approximate in parallel mode, non-deterministic
- e.field.bucket() % n == 0 - Hash-based, deterministic across runs/threads, slightly slower
Type Conversion Functions¶
to_int(value) / to_float(value) / to_bool(value)¶
Convert value to type (returns () on error).
to_int(value, thousands_sep) / to_float(value, thousands_sep, decimal_sep)¶
Parse formatted numbers with explicit separators.
Parameters:
- thousands_sep - The thousands/grouping separator (single char or empty string)
- decimal_sep - The decimal separator (single char or empty string)
Examples:
// US format (comma thousands, dot decimal)
e.price = "1,234.56".to_float(',', '.') // → 1234.56
e.count = "1,234,567".to_int(',') // → 1234567
// EU format (dot thousands, comma decimal)
e.price = "1.234,56".to_float('.', ',') // → 1234.56
e.count = "1.234.567".to_int('.') // → 1234567
// French format (space thousands, comma decimal)
e.price = "1 234,56".to_float(' ', ',') // → 1234.56
e.count = "2 000 000".to_int(' ') // → 2000000
// No thousands separator (empty string)
e.price = "1234.56".to_float("", '.') // → 1234.56
to_int_or(value, default) / to_float_or(value, default) / to_bool_or(value, default)¶
Convert value to type with fallback.
to_int_or(value, thousands_sep, default) / to_float_or(value, thousands_sep, decimal_sep, default)¶
Parse formatted numbers with separators and fallback.
// With error handling
e.amount = e.value.to_float_or(',', '.', 0.0) // Default to 0.0 if invalid
e.count = e.total.to_int_or(',', 0) // Default to 0 if invalid
value.or_empty()¶
Convert empty values to Unit () for removal/filtering.
Converts conceptually "empty" values to Unit, which:
- Removes the field when assigned (e.g.,
e.field = value.or_empty()) - Gets skipped by
track_*()functions - Works with missing fields (passes Unit through unchanged)
Supported empty values:
- Empty string:
""→() - Empty array:
[]→() - Empty map:
#{}→() - Unit itself:
()→()(pass-through)
String extraction:
// Extract only when prefix exists, otherwise remove field
e.name = e.message.after("prefix:").or_empty()
// Track only non-empty values
track_unique("names", e.extracted.or_empty())
Array filtering:
// Only assign tags if array is non-empty
e.tags = e.tags.or_empty() // [] becomes (), field removed
// Track only events with items
track_bucket("item_count", e.items.len())
if e.items.len() == 0 {
e.items = e.items.or_empty() // Remove empty array
}
Map filtering:
// Only keep non-empty metadata
e.metadata = e.parse_json().or_empty() // {} becomes (), field removed
// Safe chaining with missing fields
e.optional = e.maybe_field.or_empty() // Works even if maybe_field is ()
Common pattern - conditional extraction and tracking:
e.extracted = e.message.after("User:").or_empty()
track_unique("users", e.extracted) // Only tracks when extraction succeeds
// Filter events with no data
e.results = e.search_results.or_empty()
track_unique("result_sets", e.results) // Skips empty arrays and ()
Utility Functions¶
get_env(var [, default])¶
Get environment variable with optional default.
pseudonym(value, domain)¶
Generate domain-separated pseudonym (requires KELORA_SECRET).
read_file(path) / read_lines(path)¶
Read file contents.
drain_template(text [, options])¶
Add a line to the Drain template model and return {template, count, is_new}. Sequential mode only.
Default token filters normalize: ipv4_port, ipv4, ipv6, email, url, fqdn, uuid, mac,
md5, sha1, sha256, path, oauth, function, hexcolor, version, hexnum, duration,
timestamp, date, time, num.
For lightweight normalization without Drain, use normalized() on the field instead.
Optional options map keys:
depth(int)max_children(int)similarity(float)filters(string CSV or array of grok patterns)
drain_templates()¶
Return array of {template, count} from the current Drain model. Sequential mode only.
print(message) / eprint(message)¶
Print to stdout/stderr (suppressed with --no-script-output or data-only modes).
exit(code)¶
Exit kelora with given exit code.
skip()¶
Skip the current event, mark it as filtered, and continue with the next one. Downstream stages and output for the skipped event do not run.
status_class(status_code)¶
Convert HTTP status code to class string ("1xx", "2xx", "3xx", "4xx", "5xx", or "unknown").
e.status_category = status_class(e.status) // 404 → "4xx", 200 → "2xx"
e.is_error = status_class(e.code) == "5xx"
// Track errors by class
track_count(status_class(e.status))
// Group status codes for analysis
e.status_group = status_class(e.response_code) // 503 → "5xx"
type_of(value)¶
Get type name as string.
window.pluck(field) / window.pluck_as_nums(field)¶
Extract field values from the sliding window array (requires --window). See array.pluck() for detailed documentation.
The window variable is an array containing the N most recent events, making pluck() especially useful for rolling calculations and burst detection.
// Rolling average of response times
let recent_times = window.pluck_as_nums("response_time")
e.avg_recent = recent_times.reduce(|sum, x| sum + x, 0) / recent_times.len()
// Detect error bursts
let recent_statuses = window.pluck("status")
e.error_burst = recent_statuses.filter(|s| s >= 500).len() >= 3
// Compare current vs recent average
let recent_vals = window.pluck_as_nums("value")
e.spike = e.value > (recent_vals.reduce(|s, x| s + x, 0) / recent_vals.len()) * 2
State Management Functions¶
The global state object provides a mutable map for tracking information across events. Only available in sequential mode - accessing state in --parallel mode will raise an error.
Parallel Mode
State management is not available when using --parallel. All state operations will raise errors. Use --metrics tracking functions for parallel-safe aggregation.
Basic Operations¶
state["key"] / state[key] = value¶
Get or set values using indexer syntax.
// Initialize counter
state["count"] = 0
// Increment counter
state["count"] = state["count"] + 1
// Track unique IPs
if !state.contains("seen_ips") {
state["seen_ips"] = []
}
state["seen_ips"].push(e.ip)
state.get(key) / state.set(key, value)¶
Get or set values using method syntax. get() returns () if key doesn't exist.
let count = state.get("count") // Returns () if not found
state.set("total_bytes", 0)
// Safer pattern with default
let current = state.get("count") ?? 0
state.set("count", current + 1)
state.contains(key)¶
Check if a key exists in state.
Map Operations¶
state.keys() / state.values()¶
Get arrays of all keys or values.
let all_keys = state.keys() // ["count", "total", "seen_ips"]
let all_values = state.values() // [42, 1024, [...]]
// Iterate over all state entries
for key in state.keys() {
print(key + ": " + state[key].to_string())
}
state.len() / state.is_empty()¶
Get number of entries or check if empty.
state.remove(key)¶
Remove a key from state and return its value (or () if not found).
let old_value = state.remove("temp_data") // Remove and get value
state.remove("cache") // Just remove
state.clear()¶
Remove all entries from state.
Bulk Operations¶
state.mixin(map)¶
Merge a map into state, overwriting existing keys.
// Initialize multiple values
state.mixin(#{
count: 0,
total_bytes: 0,
seen_users: []
})
// Merge new data
state.mixin(e.metadata) // Add all metadata fields
state.fill_with(map)¶
Replace entire state with a new map.
state += map¶
Operator form of mixin() - merge map into state.
Conversion¶
state.to_map()¶
Convert state to a regular map for use with other functions.
// Export state as JSON
let state_json = state.to_map().to_json()
print(state_json)
// Export as logfmt
let state_logfmt = state.to_map().to_logfmt()
// Use in conditions
let snapshot = state.to_map()
if snapshot.contains("error_count") && snapshot["error_count"] > 100 {
exit(1)
}
Practical Examples¶
Counter Pattern:
// Initialize on first event
if state.is_empty() {
state["event_count"] = 0
state["error_count"] = 0
}
// Increment counters
state["event_count"] = state["event_count"] + 1
if e.level == "ERROR" {
state["error_count"] = state["error_count"] + 1
}
// Output summary at end
--end 'print("Events: " + state["event_count"] + ", Errors: " + state["error_count"])'
Deduplication Pattern:
// Initialize seen set
if !state.contains("seen_ids") {
state["seen_ids"] = #{} // Use map as set
}
// Skip duplicates
if state["seen_ids"].contains(e.request_id) {
skip()
}
state["seen_ids"][e.request_id] = true
Session Tracking:
// Track active sessions
if !state.contains("sessions") {
state["sessions"] = #{}
}
let session_id = e.session_id
if !state["sessions"].contains(session_id) {
state["sessions"][session_id] = #{
start: e.timestamp,
events: 0
}
}
// Update session
let session = state["sessions"][session_id]
session["events"] = session["events"] + 1
session["last_seen"] = e.timestamp
Tracking/Metrics Functions¶
All tracking functions require the --metrics flag.
Unit Value Handling
All track_*() functions that accept values silently skip Unit () values. This enables safe tracking of optional or extracted fields without needing conditional checks.
Tracking Functions¶
track_avg(key, value)¶
Track average of numeric values for key. Automatically computes the average during output. Skips Unit () values. Works correctly in parallel mode.
track_avg("avg_latency", e.response_time)
track_avg(e.endpoint, e.duration_ms)
// Safe with conversions that may fail
let latency = e.latency_str.to_float() // Returns () on error
track_avg("avg_ms", latency) // Skips () values
track_count(key)¶
Increment counter for key by 1.
track_sum(key, value)¶
Accumulate numeric values for key. Skips Unit () values.
track_sum("total_bytes", e.bytes)
track_sum(e.endpoint, e.response_time)
// Safe with conversions that may fail
let score = e.score_str.to_int() // Returns () on error
track_sum("total_score", score) // Skips () values
track_min(key, value) / track_max(key, value)¶
Track minimum/maximum value for key. Skips Unit () values.
track_unique(key, value)¶
Track unique values for key. Skips Unit () values.
track_unique("users", e.user_id)
track_unique("ips", e.client_ip)
// Combined with .or_empty() for conditional tracking
track_unique("names", e.message.after("User:").or_empty())
track_bucket(key, bucket)¶
Track values in buckets for histograms. Skips Unit () values.
let bucket = floor(e.response_time / 100) * 100
track_bucket("latency", bucket)
// Safe with optional fields
track_bucket("user_types", e.user_type.or_empty()) // Skips empty/missing
track_cardinality(key, value) / track_cardinality(key, value, error_rate)¶
Estimate unique count using HyperLogLog algorithm. Uses ~12KB of memory regardless of cardinality, with ~1% standard error by default. Skips Unit () values. Works correctly in parallel mode.
When to use: For high-cardinality data (millions of unique values) where track_unique() would consume too much memory. Use track_unique() when you need the actual values or have low cardinality.
// Basic usage - ~1% standard error, ~12KB memory
track_cardinality("unique_ips", e.client_ip)
track_cardinality("unique_sessions", e.session_id)
// Custom error rate for higher precision (uses more memory)
track_cardinality("unique_users", e.user_id, 0.005) // 0.5% error
// Safe with optional fields
track_cardinality("unique_emails", e.email.or_empty())
Output format: Shows ≈ prefix in text output to indicate approximate value:
Error rate bounds: 0.001 (0.1%) to 0.26 (26%). Lower error = more memory.
track_cardinality vs track_unique
track_unique() |
track_cardinality() |
|
|---|---|---|
| Memory | O(n) - grows with cardinality | O(1) - fixed ~12KB |
| Accuracy | Exact | ~1% error (configurable) |
| Scale | Thousands | Billions |
| Values stored | Yes (can list them) | No (count only) |
track_top(key, item, n) / track_top(key, item, n, value)¶
Track top N most frequent items (count mode) or highest-valued items (weighted mode). Skips Unit () values.
Count mode tracks the N items that appear most frequently:
// Track top 10 most common errors
track_top("common_errors", e.error_type, 10)
// Track top 5 most active users
track_top("active_users", e.user_id, 5)
Weighted mode tracks the N items with the highest custom values:
// Track top 10 slowest endpoints by latency
track_top("slowest_endpoints", e.endpoint, 10, e.latency_ms)
// Track top 5 biggest requests by bytes
track_top("heavy_requests", e.request_id, 5, e.bytes)
// Handles missing values gracefully
track_top("cpu_hogs", e.process, 10, e.cpu_time.or_empty()) // Skips ()
Output format:
- Count mode: [{key: "item", count: 42}, ...]
- Weighted mode: [{key: "item", value: 123.4}, ...]
- Results are sorted by value descending, then alphabetically by key
track_bottom(key, item, n) / track_bottom(key, item, n, value)¶
Track bottom N least frequent items (count mode) or lowest-valued items (weighted mode). Skips Unit () values.
Count mode tracks the N items that appear least frequently:
// Track bottom 5 rarest errors
track_bottom("rare_errors", e.error_type, 5)
// Track least active users
track_bottom("inactive_users", e.user_id, 10)
Weighted mode tracks the N items with the lowest custom values:
// Track 10 fastest endpoints by latency
track_bottom("fastest_endpoints", e.endpoint, 10, e.latency_ms)
// Track smallest requests
track_bottom("tiny_requests", e.request_id, 5, e.bytes)
Output format:
- Count mode: [{key: "item", count: 1}, ...]
- Weighted mode: [{key: "item", value: 0.5}, ...]
- Results are sorted by value ascending, then alphabetically by key
Memory Efficiency
track_top() and track_bottom() use bounded memory (O(N) per key) unlike track_bucket() which stores all unique values. For high-cardinality fields, prefer top/bottom tracking over bucketing.
Parallel Mode Behavior
In parallel mode, each worker maintains its own top/bottom N. During merge, the lists are combined, re-sorted, and trimmed to N. Final results are deterministic.
track_percentiles(key, value [, [percentiles]])¶
Track streaming percentiles using the t-digest algorithm for memory-efficient percentile estimation. Automatically creates suffixed metrics for each percentile (e.g., latency_p50, latency_p95, latency_p99.9). This is the only track_*() function that auto-suffixes because percentiles are inherently multi-valued. Skips Unit () values. Works correctly in parallel mode.
Default percentiles: [0.50, 0.95, 0.99] when no array provided.
Percentile notation: Use 0.0-1.0 range (quantile notation):
- 0.50 = 50th percentile (median) → creates key_p50
- 0.95 = 95th percentile → creates key_p95
- 0.999 = 99.9th percentile → creates key_p99.9
Memory efficiency: Uses ~4KB per metric regardless of event count (vs. storing all values). Suitable for millions of events.
Accuracy: ~1-2% relative error, suitable for operational monitoring.
// Default percentiles [0.50, 0.95, 0.99]
track_percentiles("api_latency", e.response_time)
// Creates: api_latency_p50, api_latency_p95, api_latency_p99
// Custom percentiles
track_percentiles("latency", e.duration_ms, [0.50, 0.95, 0.99])
// Creates: latency_p50, latency_p95, latency_p99
// High-precision percentiles
track_percentiles("latency", e.duration_ms, [0.999, 0.9999])
// Creates: latency_p99.9, latency_p99.99
// Per-endpoint tracking
track_percentiles("latency_" + e.endpoint, e.response_time, [0.95, 0.99])
// Safe with conversions that may fail
let latency = e.latency_str.to_float() // Returns () on error
track_percentiles("api_p95", latency) // Skips () values
When to Use Percentiles vs. Average
Use track_percentiles() instead of track_avg() when:
- You need tail latency metrics (p95, p99) for SLO monitoring
- Data has outliers that would skew the average
- You need multiple percentile values (median, p95, p99)
- Working with latency, response time, or duration metrics
Parallel Mode Behavior
In parallel mode, each worker maintains its own t-digest. During merge, digests are combined using the t-digest merge algorithm, preserving accuracy. Final percentile values are deterministic.
track_stats(key, value [, [percentiles]])¶
Convenience function that tracks comprehensive statistics in a single call: min, max, avg, count, sum, and percentiles. Automatically creates suffixed metrics for each statistic. Ideal for getting the complete statistical picture of a metric without calling multiple track_*() functions. Skips Unit () values. Works correctly in parallel mode.
Auto-created metrics:
- {key}_min - Minimum value
- {key}_max - Maximum value
- {key}_avg - Average (stored as sum+count for parallel merging)
- {key}_count - Total count
- {key}_sum - Total sum
- {key}_p50, {key}_p95, {key}_p99 - Percentiles (default)
Default percentiles: [0.50, 0.95, 0.99] when no array provided.
Percentile notation: Same as track_percentiles() - use 0.0-1.0 range (quantile notation).
// Default percentiles [0.50, 0.95, 0.99]
track_stats("response_time", e.duration_ms)
// Creates: response_time_min, response_time_max, response_time_avg,
// response_time_count, response_time_sum,
// response_time_p50, response_time_p95, response_time_p99
// Custom percentiles
track_stats("latency", e.duration, [0.50, 0.90, 0.99, 0.999])
// Creates all basic stats plus: latency_p50, latency_p90, latency_p99, latency_p99.9
// Per-endpoint comprehensive tracking
track_stats("api_" + e.endpoint, e.response_time)
// Safe with conversions that may fail
let duration = e.duration_str.to_float() // Returns () on error
track_stats("request_ms", duration) // Skips () values
When to Use track_stats() vs. Individual Functions
Use track_stats() when:
- You want the complete statistical picture (min, max, avg, percentiles)
- Analyzing latency, response time, or duration metrics
- Building dashboards that need multiple statistical views
- Prototyping or exploring data characteristics
Use individual track_min/max/avg/percentiles when:
- You only need specific statistics (performance optimization)
- Fine-grained control over which metrics are tracked
- Minimizing memory usage (percentiles use ~4KB per metric)
Performance Considerations
track_stats() internally calls the same logic as individual tracking functions, so it has the same performance characteristics. The main overhead is from percentile tracking (~4KB memory per metric). If you don't need percentiles, use track_min(), track_max(), and track_avg() instead.
Parallel Mode Behavior
All generated metrics use existing merge operations (min, max, avg, count, sum, percentiles), so track_stats() works correctly in parallel mode with no special handling required.
File Output Functions¶
All file output functions require the --allow-fs-writes flag.
append_file(path, text_or_array)¶
Append line(s) to file; arrays append one line per element.
truncate_file(path)¶
Create or zero-length a file for fresh output.
mkdir(path [, recursive])¶
Create directory (set recursive=true to create parents).
Event Manipulation¶
emit_each(array [, base_map])¶
Fan out array elements as separate events (returns emitted count).
emit_each(e.users) // Each user becomes an event
emit_each(e.items, #{batch_id: e.batch_id}) // Add batch_id to each
// Use return value to track emission count
let count = emit_each(e.batch_items, #{batch_id: e.id})
track_sum("items_emitted", count)
e = ()¶
Clear entire event (remove all fields).
e.field = ()¶
Remove individual field from event.
e.absorb_kv(field [, options])¶
Parse inline key=value tokens from a string field, merge the pairs into the event, and get a status report back. Returns a map with status, data, written, remainder, removed_source, and error so scripts can branch without guessing.
let res = e.absorb_kv("msg", #{ sep: ",", kv_sep: "=", keep_source: true });
if res.status == "applied" {
e.cleaned_msg = res.remainder ?? "";
// Parsed keys now live on the event; res.data mirrors the inserted pairs
}
Options:
sep: string or()(default whitespace) – token separator;()normalizes whitespace.kv_sep: string (default"=") – separator between key and value.keep_source: bool (defaultfalse) – leave the original field untouched; useremainderfor cleaned text.overwrite: bool (defaulttrue) – allow parsed keys to overwrite existing event fields; setfalseto skip conflicts.
Unknown option keys set status = "invalid_option"; in --strict mode this aborts the pipeline.
e.absorb_json(field [, options])¶
Parse a JSON object from a string field, merge its keys into the event, and return the same status map as absorb_kv(). On success the source field is deleted unless keep_source is true, and remainder is always ().
let res = e.absorb_json("payload");
if res.status == "applied" {
e.actor = e.actor ?? e.user; // merged from payload
} else if res.status == "parse_error" {
warn(`bad payload: ${res.error}`);
}
Options:
keep_source: bool (defaultfalse) – keep the original JSON string instead of deleting the field.overwrite: bool (defaulttrue) – allow parsed keys to replace existing event fields (falseskips conflicts).
Other absorb options (like sep) are accepted for consistency but ignored. JSON parsing is all-or-nothing: invalid JSON or non-object payloads set status = "parse_error" and leave the event untouched.
e.absorb_regex(field, pattern [, options])¶
Extract named capture groups from a string field using a regular expression pattern, merge the extracted values into the event, and return a status map (same structure as absorb_kv() and absorb_json()).
The pattern must use named capture groups ((?P<name>...)) to define which parts of the text to extract. Only named captures become event fields; numbered groups are ignored.
// Extract user and IP from log message
let res = e.absorb_regex("msg", r"User (?P<user>\w+) logged in from (?P<ip>[\d.]+)");
if res.status == "applied" {
print(`${e.user} from ${e.ip}`); // Extracted fields now on event
}
// Parse structured log line with multiple fields
let pattern = r"(?P<date>[\d-]+) (?P<level>\w+) (?P<file>[\w.]+):(?P<line>\d+) (?P<message>.+)";
e.absorb_regex("line", pattern);
// Now e.date, e.level, e.file, e.line, e.message are all populated
Options:
keep_source: bool (defaultfalse) – preserve the original field instead of removing it after extractionoverwrite: bool (defaulttrue) – allow extracted fields to overwrite existing event fields (falseskips conflicts)
Status values:
"applied"– pattern matched and fields were extracted"empty"– pattern didn't match (no captures)"parse_error"– invalid regex pattern"missing_field"– source field doesn't exist"not_string"– source field is not a string"invalid_option"– unknown option key (aborts in--strictmode)
When to use:
- absorb_regex() – Extract structured data from unstructured text with custom patterns
- absorb_kv() – Parse
key=valuepairs (simpler, faster) - absorb_json() – Parse JSON objects (type-aware)
- Regex input format (
-f regex) – Use for whole-log parsing at input time
// Complex example: parse Apache access log format
let apache_pattern = r#"(?P<ip>\S+) \S+ \S+ \[(?P<timestamp>[^\]]+)\] "(?P<method>\S+) (?P<path>\S+)[^"]*" (?P<status>\d+) (?P<bytes>\d+)"#;
e.absorb_regex("line", apache_pattern);
// Keep source for debugging
e.absorb_regex("raw_message", r"ERROR: (?P<error_code>\d+) - (?P<error_msg>.+)",
#{ keep_source: true });
Span Context – --span-close Only¶
A read-only span object is injected into scope whenever a --span-close script runs. Use it to emit per-span rollups after Kelora closes a count- or time-based window.
Span Identity¶
span.id returns the current span identifier. Count-based spans use #<index> (zero-based). Time-based spans use ISO_START/DURATION (e.g. 2024-05-19T12:00:00Z/5m).
Span Boundaries¶
span.start and span.end expose the half-open window bounds as DateTime values. Count-based spans return () for both fields.
Span Size and Events¶
span.size reports how many events survived filters and were buffered in the span. span.events returns those events in arrival order. Each map includes span metadata fields (span_status, span_id, span_start, span_end) alongside the original event data.
Metrics Snapshot¶
span.metrics contains per-span deltas from track_* calls. Values reset automatically after each span closes, so you can emit per-span summaries without manual bookkeeping.
let metrics = span.metrics;
let hits = metrics["events"]; // from track_count("events")
let failures = metrics["failures"]; // from track_count("failures")
let ratio = if hits > 0 { failures * 100 / hits } else { 0 };
print(span.id + ": " + ratio.to_string() + "% failure rate");
Quick Reference by Use Case¶
Error Extraction:
IP Anonymization:
Time Filtering:
Metrics Tracking:
Array Fan-Out:
Safe Field Access:
e.user_name = e.get_path("user.profile.name", "unknown")
if e.has_path("error.details.code") {
e.detailed = true
}
See Also¶
- CLI Reference - Command-line flags and options
- Rhai Cheatsheet - Rhai language syntax
- Advanced Scripting Tutorial - Learn advanced scripting
- How-To: Sanitize Logs Before Sharing - Practical examples
For more details, run: